Offering Branches				CE											
Course Category:			:	Basic Sciences							Credits:			3	
				Theory							Lecture-Tutorial-			2.0.0	
Course Type:											Practical:			3-0-0	
											Continuous			30	
Prerequisites:				20BS1101- Calculus and Linear Algebra Evaluation:										00	
				20BS1201- Differential Equations and Semester End										70	
				Vector Calculus Evaluation:											
				Total Marks: 1										00	
Cours	e Out	comes	1.4	<u> </u>	1		<u> </u>	· ·1	11 11						
Upon s	Compute the resultant of concurrent and non-concurrent system of forces											V 2			
	Compute the resultant of concurrent and non-concurrent system of forces											K3 K2			
C02	Solve	the pro	hlems	un productions of concurrent and non-concurrent system of forces											
C03	Calci	Solve the problems related to plane truss, wedge, and ladder informations									K3				
C04	Solve	the pro	hlems	related	to rect	ilinear i	motion	nroiec	tiles cu	rvilinea	· Motion			K3	
	Contribution of Course Outcomes towards achievement of Program Outcomes											IN.			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	2	2	2	2					2	2		
CO2	2	2	2	2	2	2	2					2	2		
CO3	3	3	3	3	3	2	2					2	3		
CO4	2	2	2	2	2	2	2					2	2		
CO5	2	2	2	2	2	2	2					2	2		
Avg.	2	2	2	2	2	2	2					2	2		
1- Low 2-Medium 3-High															
						Cou	rse (Cont	tent						
	C	oncur	rent sy	stem	of forc	es:									
	Introduction, definition of a force, classification of system of forces, principle of														
	transmissibility, resolution of a force, composition of forces, resultant and														
	equilibrant. Triangle law of forces, polygon law of forces. Analytical method of														
UNIT	determination of the resultant of the system of forces Problems on the												n the	CO1	
		etermir	nation	of resu	ltant o	f conci	urrent	coplan	ar syste	em of fo	orces.	.1	c		
	Non-concurrent system of forces: Moment of a force, Varignon's theorem of														
	and position of resultant of non-concurrent conlanar system of forces Example														
		oblem	s	1 1050		1 11011-	concur		opianai	system		DAC	ampie		
		quilib	- rium	of svs	tem a	of for	ces: D	efiniti	on, co	nditions	s of ear	uilibriur	n for		
	concurrent coplanar system of forces, Lami's theorem. Example problems.														
	Types of supports, loads and beams. Determination of support reactions for													002	
	st	atically	y deter	minate	beam	s and o	ther si	mple s	structur	es.					
	T	russes	: Defir	nition:	Plane	e truss,	space	truss,	determ	inate tr	uss and i	ndetern	ninate		
	tr	uss. A	nalysis	s of p	lane tr	uss us	ing m	ethod	of joii	nts and	method	of sec	tions.		
	Numerical examples.														
UNIT	-3 Friction: Introduction, angle of triction, coefficient of friction, cone friction,													003	
	related to impending motion on horizontal and inclined planes wedge														
	fr	iction	io III	npenui	ng III	00001		1011201	nai di	iu iiit	mea p	ianes, v	reuge		
	Centroid and Centre of Gravity. Definition derivation of expressions for														
		entroid	al dista	ances	of sim	ple pla	nar la	minas	like ree	ctangle.	triangle	, quarte	r and	004	
UNIT	-4 se	mi-cir	cle. De	etermir	ation	of cent	roidal	distan	ces of c	compou	nd lamin	as.		CO4	
	Μ	lomen	t of I	nertia	: Intro	ductio	n, Det	finitior	n, Theo	orems o	of perpe	ndicula	r and		

20BS1304 - APPLIED MECHANICS

	parallel axis. Concept of axis of symmetry, derivations of expressions for moment											
	of inertia of simple planar laminas like rectangle, triangle, quarter, and semi-circle											
	and circle. Definitions of polar moment of inertia, radius of gyration,											
	Determination of moment of inertia, polar moment of inertia, radius of gyration of											
	compound laminas about centroidal axes and about any specified reference line.											
UNIT-5	Dynamics Of Particles:											
	Displacements, Velocity and acceleration, their relationship in rectilinear motion,											
	Curvilinear motion in rectangular coordinates, normal and tangential coordinates,											
	projectile motion, Newton's law, D'Alembert's Principle.											
Learning Resources												
Text Boo	1. A. K. Tayal, Engineering Mechanics (Statics and Dynamics), Umesh											
	Publications, 14th Edition, 2011.											
	2. N.H. Dubey, Engineering Mechanics(Statics and Dynamics), McGraw H	Iill										
	Education (India) Private Limited, 2016.											
Referenc	e 1. S. Timoshenko & D. H. Young, and JV Rao, Engineering Mechanics, 4	4th										
Books	Ed., TMH Education, 2006.											
	2. K. Vijay Kumar Reddy, J. Suresh Kumar, Singer's Engineering Mechani	ics										
	Statics and Dynamics, BS Publications, 3rd Edition, 2011.											
e-Resour	ces& 1. <u>http://nptel.ac.in/courses.php</u>											
other dig	gital 2. <u>http://jntuk-coeerd.in/</u>											
material												